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TID DESIGN AND CONSTRUCTION OF FLOATING-ELEMFNT 

SKIN-FRICTION BALANCES FOR USE AT 50" TO 150°F 

By J.  C .  Westkaemper 

SUMMARY 

This  repor t  presents  the  r e su l t s  of a study of the use of 

floating-element sk in - f r i c t ion  balances f o r  use over a moderate 

range of temperature and heating rates. 
inves t iga t ion  of t h e  buoyancy forces on t h e  f l o a t i n g  element and 

of t h e  use of pressure o r i f i c e s  i n  the balance case t o  ind ica te  

element misalignment. The case o r i f i c e s  were found t o  be t o o  

l a r g e  t o  give an accurate  indicat ion of v e r t i c a l  misalignment; the 

s i z e  a l so  precluded t h e i r  use t o  determine t h e  buoyancy forces .  

o r i f i c e  s i z e  necessary t o  accurately ind ica te  buoyancy forces  appears 

t o  be t o o  small t o  be mechanically prac t icable .  

of temperature va r i a t ions  appears t o  be a combination of themal 

expansion on thermal s t r a i n s  i n  t h e  mechanical components of the 

balance design used. These e f f ec t s  were minimized by s e l e c t i v e  

assembly s o  that  t h e  individual  contr ibut ions of the components 

cancelled out i n  t h e  complete balance. Th i s  method proved very 

tedious and time-consuming, pa r t i cu la r ly  f o r  balances wi th  high 

s e n s i t i v i t i e s .  

The study included an 

The 

The main influence 
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I -  

* 
INTRODUCTION 

The sk in - f r i c t ion  balance based on the  f l o a t i n g  element prin- 

c iple ,  shown schematically i n  Fig. 1, has been i n  use fo r  over 

35 years (Refs. 1, 2, 3, and 4) .  
i s  that it measures t h e  a c t u a l  f r i c t i o n  on a small element of the 

test  surface,  while o ther  methods deduce the  f r i c t i o n  ind i r ec t ly  

from pressure o r  temperature measurements. 

p r inc ip le ,  t h e  balance method has exhibi ted some problems i n  appl i -  

ca t ion  which are important i n  hlgh-precieion experiments. 

long been evident that t h e  element that f l o a t s  on leaf springe m u s t  
be mounted f lu sh  wi th  t h e  tes t  surface, but only recent ly  has t h e  

e r r o r  caused by misalignment been s tudied ( R e f ,  5 ) .  Another area 
of uncertainty i s  the buoyancy force tha t  results when the balance 

is used i n  a non-uniform pressure f i e l d .  

unbalanced pressures a c t  on t h e  edge of t h e  f l o a t i n g  element, and 

it i s  customarily minimized by making the edge ( l i p )  dimension as 
small as prac t icable .  

recent  balance appl icat ions is  a s e n s i t i v i t y  t o  temperature changes 

such as frequent ly  occur i n  supersonic wind tunnels .  The balance 

employs en e l e c t r i c a l  pos i t ion  transducer t o  sense the de f l ec t ion  

of the  mounting spr ings when f r i c t i o n  i s  appl ied t o  the f l o a t i n g  

element. The usual t ransducer  is a l i n e a r  var iab le  d i f f e r e n t i a l  

transformer, known t o  be temperature sens i t i ve .  

temperature changes a l s o  introduce mechanical problems i n  the form 

of thermal s t r e s s e s  and expansions, which may introduce e r ro r s .  

The main advantage of t h e  device 

Despite i t s  a t t r a c t i v e  

It has 

This force  occurs when 

The major problem which has evolved i n  

I n  addi t ion,  

The s a t i s f a c t o r y  performance of the f r i c t i o n  balance i n  the 

past has perhaps been the result of an absence of temperature changes 

plus  the care of the invest igator .  It is  estimated that the  accuracy 
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under those conditions is  approxhate ly  * 5 percent, which may be 
adequate f o r  exploratory s tudies .  More recent ly ,  it has become 

necessary t o  pred ic t  sk in- f r ic t ion  drag t o  approximately 1 percent 

accuracy, s ince t h e  success o r  f a i l u r e  of some vehicle  designs may 

depend on a s m a l l  change i n  t h e  sk in - f r i c t ion  component of t o t a l  

drag (Refs. 6 and 7) .  
s a t i s f a c t o r i l y  f o r  t h e  t e s t s  reported i n  Ref. 8, were loaned t o  
the NASA-Langley Research Center where they were used fo r  severa l  

invest igat ions.  As noted i n  Refs. 6 and 7, t h e i r  performance did 

not s a t i s e  the  more s t r ingent  requirements of today. This u l t i -  

mately led t o  t h e  present work, t h e  developnent of balances of 

improved accuracy, and a study of t h e  use of pressure o r i f i c e s  i n  

t h e  case l i p  t o  determine buoyancy forces .  

Several balances, which performed qui te  
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W C E  DESIGN 

The design spec i f ica t ions  f o r  t h e  s i x  balances a r e  l i s t e d  i n  

Table I. A s  noted e a r l i e r ,  t h e  general  accuracy o f t h e  balances 

ava i lab le  p r i o r  t o  t h e  present work was approximately 5 percent ,  

The spec i f ica t ions  i n  Table I require an accuracy of from 1/2 t o  

2 percent i n  t h e  various aspects of balance performance. 

these  requirements a r e  considerably more s t r ingen t  than those 

a t t a ined  by t h e  earlier balances, it was decided t h a t  an improve- 

ment i n  design w a s  more pract icable  than an e n t i r e l y  new design. 

A major f ac to r  i n  t h i s  decision w a s  the  operating temperature range. 

T h i s  range presented no problems i n  physical de t e r io ra t ion  of 

balance components, and it appeared that t h e  e l e c t r i c a l  performance 

of t h e  posi t ion t ransducer  could be made acceptable over t h e  range. 

Bench tests of t h e  earlier balances a t  room temperatures showed 

t h a t  accuracies of 1/2 percent were cons is ten t ly  obtained. 

the primary problem i n  the present work w a s  t h e  inf luence of t h e  

spec i f ied  ranges of operat ing temperature and heat transfer. 

Although 

Thus, 

The influence of temperature on balance performance may be 

placed i n  two categories .  The first, i s  t h e  influence on t h e  

e l e c t r i c a l  cha rac t e r i s t i c s ,  of t h e  pos i t ion  transducer,  and t h e  

second is  t h e  e f f e c t  represented by thermal expansion and thermally 

induced s t r a i n s  i n  t h e  various mechanical components of t h e  balances. 

These w i l l  be discussed separately i n  some d e t a i l .  

The e f f e c t  of temperature on t h e  l i n e a r  variable d i f f e r e n t i a l  

t ransducer  is  primarily a change i n  t h e  r e s i s t i v e  component of t h e  

impedance of t h e  primary. 

t h i s  problem, t h e  simplest approach appears t o  be the use of an 

exc i t a t ion  frequency t h a t  i s  high enough t o  make the inductive 

Although the re  are severa l  ways t o  t r e a t  
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TABLE I 

BALANCE DESIGN SPECIFICATIONS 

Shear force range, l b  . . . . . . . , . , . . . . , 0.002 
0.005 
0.012 

Operating temperature range, O F  . . . . . . . . . . 50 t o  150 

Non-linearity, percent f u l l  s ca l e  . . . . . . . . . * 1 
Zero d r i f t  (8 hr), percent full sca le  . . . . . . . k 1/2 

Thermal zero s h i f t ,  percent full sca l e  . . . . . . . k 1 

Repeatabil i ty and agreement .among 
balances from wind tunnel  tests, 
percent full sca le  . . . . . . . . . . . . . . . . 2 

Heat t r ans fe r  (Taw- T) ,  OF . . . . . . . . . . . . f 25 
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impedance much l a r g e r  than t h e  r e s i s t i v e  component. 

t h e  change i n  res i s tance  becomes a negl ig ib le  par t  of t h e  t o t a l  

impedance. Thus, t he  current  remains constant w i t h  temperature 

when a constant supply voltage is  appi ied t o  t h e  primary. 

quency of 20 kHz w a s  se lec ted  t o  permit use of a commercial c a r r i e r  

amplifier using t h a t  frequency. 

i n  a change i n  phase between the primary and secondary voltages.  

Therefore, c a r r i e r  amplif iers  operating on a phase-sensing pr inc ip le  

may be su i t ab le  f o r  exc i t i ng  the primary, but  w i l l  not necessar i ly  

be f r e e  of temperature e f f ec t s  i f  used t o  measure t h e  output by 

phase-sensing. 

by an audio o s c i l l a t o r  and amplifier,  se lec ted  t o  be r e l a t i v e l y  

constant i n  amplitude. 

using an rms voltmeter having a dc proportional output, which was 
indicated using a dc d i g i t a l  voltmeter, 

was  made in sens i t i ve  t o  t h e  phase between input and output voltages.  

I n  t h i s  way, 

A fre- 

A temperature change a l s o  r e s u l t s  

I n  t h e  present study t h e  exc i t a t ion  was supplied 

The transducer output voltage was measured 

I n  t h i s  manner, t h e  system 

The above e f f e c t  of temperature on t h e  t ransducer  per ta ins  

t o  t h e  gauge factor ,  i .e .  t h e  slope of t he  curve of  output voltage 

vs displacement. Another possible e f f e c t  i s  t h e  change i n  reading 

when t h e  transducer core is fixed with respect  t o  t h e  transformer. 

This second e f f e c t  i s  equivalent t o  a zero s h i f t  with temperature. 

An estimate of t h e  thermal zero s h i r t  of t h e  t ransducer  i tsel f  was 
obtained by placing t h e  core in t h e  transformer a t  t h e  approxha te  

zero posi t ion.  The threaded shaf t  which normally supports t h e  

core ( see  Fig.1) was not used i n  t h i s  case.  The transformer output 

under these  conditions was monitored while the  temperature w a s  

var ied by 130°F. The zero s h i f t  w a s  found t o  be approximately 

1 percent of t he  reading obtained when t h e  core i s  t raversed  a 

d is tance  equivalent t o  f u l l  scale t r a v e l  on an assembled balance. 

Although t h i s  t e s t  w a s  somewhat crude, t h e  results did ind ica t e  
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that t h e  e f f e c t  of temperature changes on t h e  transducer zero were 

comparatively small. 
point. that i n  terms of sk in- f r ic t ion  balance displacement 1 percent 

represents a t rave l  of 43 pin. 

resu l t ing  from a 100°F temperature change i s  approximately four 
times that amount. 

It i s  perhaps appropriate t o  note a t  th i s  

The increase i n  length  of the core 

It has previously been noted that the f l o a t i n g  element of the 

sk in- f r ic t ion  balance must be very carefu l ly  aligned i n  the t e s t  

surface.  

t es t  surface, erroneous sk in- f r ic t ion  readings w i l l  r e s u l t .  Since 

t h e  balances i n  the present work are intended f o r  operation over 

a range of temperatures, it w a s  necessary t o  consider t h e  e f f e c t s  

of thermal expansion on the alignment of the f l o a t i n g  element w i t h  

t h e  mounting case.  

aluminum t o  minimize the  sprung weight. 

made of Elinvar Extra material f o r  reasons discussed la ter .  

supporting members at t h e  balance base were constructed of s ta in-  

l e s s  s t e e l  t o  preclude corrosion. Thus, t h e  balance proper w a s  

constructed of th ree  d i f f e r e n t  materials. The combined thermal 

expansion of t h e  s t r u c t u r a l  elements made from these  three materials 

w a s  determined. A mater ia l  was then se lec ted  f o r  the case, such 

t h a t  i t s  increase i n  length with temperature would be matched by 

the increase i n  length of t h e  balance and i t s  supporting base. 

If the element protrudes above, o r  is  recessed i n t o  the  

The f l o a t i n g  elements were constructed of 

The f lexure springs were 

The 

I n  addition t o  the e f f e c t  of temperature on floating-element 

alignment, t h e r e  e x i s t s  the problem of the e f f e c t  of thermal ex- 

pansion, i n  p a r t i c u l a r  thermal s t r a i n s  on balance performance. 

motion of t h e  transformer core which results from thermal e f fec ts  

w i l l  appear as a spurious drag indicat ion.  

sary that such thermal displacements be eliminated. 

Any 

It i s  therefore  neces- 

T h i s  w a s  found 
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t o  be t h e  major problem i n  obtaining sa t i s fac tory  balance perfor- 

mance. A s  previously noted, a displacement of 43 pin. represents 

1 percent of t h e  f u l l  scale  t r a v e l  f o r  which t h e  balances were 

designed. Ir, t h e  case of  t h e  most sens i t ive  balance, 2.e. +,he two 

having a f u l l  sca le  f r i c t i o n  force of 2 m l b ,  t h e  force necessary 

t o  obtain a 1 percent displacement i s  20 p lb .  Thus, it i s  evident 

that t h e  balances are extremely sens i t ive ,  and qui te  small thermal 

s t r a i n s  can resu l t  i n  la rge  e r rors  i n  the balance readings,  Because 

of small var ia t ions i n  fabr icat ion and assembly, each balance per- 

formed w i t h  s l i gh t  differences from t h e  o thers .  

t h e  var ia t ions  i n  f l a t n e s s  of the flexures,  resu l t ing  from t h e  

heat- t reat ing process, proved t o  be t h e  major source of thermal 

I n  par t icu lar ,  

zero s h i f t .  

and heat t rea t ing ,  some degree of d i s t o r t i o n  w a s  present i n  a l l  
of the f lexures .  During assembly of the  balances, the least dis- 

t o r t e d  f lexures  were selected.  However, even these resu l ted  i n  

sane thermal zero s h i f t .  The only pract icable  solut ion found in- 

volved se lec t ive ly  or ien t ing  and interchanging f lexures  u n t i l  a 

p a i r  was obtained which cancelled overa l l  d i s t o r t i o n s .  

Although considerable care was taken i n  fabr ica t ing  

Since the  transducer output i s  d i r e c t l y  proportional t o  the  

input signal,  it i s  evident t h a t  var ia t ions  i n  input w i l l  appear 

as corresponding var ia t ions  i n  the output. Thus i f  t h e  supply 

voltage varies,  a corresponding shif t  i n  t he  output reading i s  

observed. 

used i n  t he  present work was  monitored. 

of approximately one-half day, the amplitude was found t o  be s t a b l e  

t o  within less than 1/2 percent, During these  tests, the amplif ier  

w a s  connected t o  a posi t ion transducer t o  s t imulate  the  n o m 1  load 

of operation. Similar t e s t s  were made i n  which t h e  output of 

various sk in- f r ic t ion  balances was monitored over a period of 

The long-term s t a b i l i t y  of the o s c i l l a t o r  and amplif ier  

A f t e r  a warm-up period 
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severa l  days. During these  tests, t h e  balances were maintained 

a t  room temperature. 

zero s h i f t  of t h e  balances w a s  pr imari ly  determined by t h e  sta- 

b i l i t y  of t h e  power supply t o  t h e  t ransducer .  

n a t e  t rans ien ts ,  associated wi th  warm-up of t h e  power supply and 

read out instrumentation, t h i s  equipnent w a s  kept turned on con- 

t inuously.  Where pract icable ,  a balance w a s  connected t o  t h e  

power supply t o  avoid operating it i n  t h e  unloaded condition. 

Each time a new balance w a s  a t tached t o  t h e  power supply, a warm- 
up period of t h e  balance i tself  of 2 t o  4 hours w a s  allowed be- 

fo re  t e s t i n g  began. 

The results indicated t h a t  t h e  long term 

I n  order t o  elimi- 

Because of t h e  low l e v e l  of t h e  output s igna l  from t h e  skin- 

f r i c t i o n  balance, some problems were encountered wi th  shielding.  

I n  order t o  avoid s t r a y  pickup, it was necessary t o  ca re fu l ly  

sh i e ld  a l l  cables i n  t h e  c i r c u i t .  I n  addi t ion,  t h e  l i n e a r  var i -  

ab le  d i f f e r e n t i a l  transformer used as a pos i t ion  t ransducer  i n  

t h e  f r i c t i o n  balances w a s  itself shielded.  

set-up, t h e  s t r a y  voltage l e v e l  w a s  less than 0.1 percent of t h e  

output equivalent t o  f u l l  sca le  def lec t ion  of t h e  balance.  

I n  t h e  f i n a l  t es t  

10 



BALANCE CONSTRUCTION 

The e a r l i e r  sk in- f r ic t ion  balances employed by Defense Research 

Laboratory used beryllium-copper f lexures .  This material was found 

sa t i s f ac to ry  i n  terms of i t s  low hys teres i s  and ease of fabr icat ion,  

as w e l l  as being corrosion r e s i s t an t .  The modulus of e l a s t i c i t y  of 

t h i s  material i s  temperature sensit ive,  however. For a temperature 

change of lW°F, a reduction i n  modulus of e l a s t i c i t y  of s l i g h t l y  

less than 2 percent w i l l  occur. 

as a t t r a c t i v e  as a f lexure mater ia l  when balances are operated 

over varying temperature conditions. For t h i s  reason it w a s  de- 

cided t o  employ a material f o r  f lexures  that had a constant modulus 

of e l a s t i c i t y  with varying temperature. 

su i t ab le  w a s  Elinvar Extra, manufactured by t h e  Hamilton Watch Com- 

pany. This mater ia l  has as i t s  primary const i tuents  i ron  and 

nickel,  hence it i s  comparatively corrosion r e s i s t a n t .  A d i s -  

advantage, which became evident after balances using these  f lexures  

were assembled, w a s  t h e  low thermal conductivity of t h e  material 

when compared t o  beryllium copper. The f lexures  f o r  t h e  two mlb 

balances were O.Kl3-in. t h i ck .  The combination of t h e  high sensi-  

t i v i t y  of these balances and the t h i n  f lexures  resu l ted  i n  an ex- 

treme s e n s i t i v i t y  t o  thermal s t r a ins .  

zero s h i f t s  of 20-50 percent of t h e  fu l l  s ca l e  balance output. 

Attempts t o  minimize t h i s  s h i f t  by se l ec t ive  pa i r ing  and orienta- 

t i o n  of t h e  f lexures  did not r e su l t  i n  zero s h i f t s  of less than 

5 percent. Therefore, f o r  t h e  two balances having a ful l  sca le  

f r i c t i o n  force of 2 mlb, it was necessary t o  employ beryllium- 

copper f lexures .  

sa t i s fac tory ,  presumably because of i t s  much higher thermal con- 

duc t iv i ty .  

Thus, t he  beryllium copper is  not 

A material which appeared 

This resu l ted  i n  thermal 

The r e s u l t s  with t h e  beryllium copper were 

The higher conductivity would be expected t o  reduce 
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temperature gradients and thus thermal s t r a i n s  which might occur 

i n  t h e  flexures.  The two balances employing beryl l im-copper  

flexures were f i t t e d  wi th  cases made from 303 s t a i n l e s s  steel, i n  
order t o  match t h e  o v e r a l l  changes i n  length  of t h e  balance and 

t h e  case. The balances using t h e  Elinvar f lexures  were f i t t e d  

wi th  cases made from 431 s t a i n l e s s  steel  i n  order t o  match t h e  

thermal expansion of t h e  Elinvar assembly. 

The design spec i f ica t ions  c a l l  f o r  t h e  inclusion of a thermo- 

couple i n  t h e  f l o a t i n g  element. 

spr ing mounted, t h e  thermocouple wires must be t r e a t e d  as addi t iona l  

springs attached t o  t h e  element. 

force required t o  d e f l e c t  t h e  thermocouple leads be kept small i n  

order t o  avoid a l t e r i n g  t h e  balance spr ing constant.  I n  addition, 

t h e  force required t o  d e f l e c t  t h e  thermocouple wires must be highly 

repeatable i n  order t o  avoid changes i n  balance gauge f a c t o r .  This 

problem w a s  approached by using a thermocouple made from 0.001-in.  
diameter i ron  and constantan wires. 

staked in  a hole i n  t h e  lower surface of t h e  f l o a t i n g  element and 

t h e  wires were s t rung somewhat loosely t o  one s i d e  of the t rans-  

former holder, as seen i n  Fig. 2. I n  t h i s  manner, t h e  e f f e c t  of 

t h e  wires on t h e  spr ing constant o f  t h e  balances was made negligi-  

b le .  The very s m a l l  diameter of t h e  wires presented some handling 

problem, however, and extreme care  w a s  necessary i n  making t h e  

thermocouple i n s t a l l a t i o n .  

Since t h e  f l o a t i n g  element is  

Thus, it is  necessary t h a t  the  

The thermocouple bead w a s  

The spec i f ica t ions  a l s o  ca l led  f o r  an i ron  constantan thermo- 

couple t o  monitor t h e  case temperature. This thermocouple w a s  

made of tef lon-insulated thermocouple w i r e ,  spot-welded t o  t h e  

ins ide  o f  t h e  case as seen i n  Fig. 3. The thermocouple wires were 

brought through an opening i n  t h e  case i n  such a way tha t  t h e  

.. 
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balance could be removed and i n s t a l l e d  i n  the  case without ais- 
turb ing  t h e  case thermocouple leads. The spot-weld w a s  covered 

w i t h  a s m a l l  amount of epoxy glue f o r  insu la t ing  purposes and t o  

pro tec t  t h e  the,mocouple from d a a g e .  The case opening through 

which t h e  thermocouple leads passed was  made a i r t i g h t  by f i l l i n g  

wi th  epoxy. 

I n  order t o  minimize t h e  p o s s i b i l i t y  of misalignment of t h e  

f l o a t i n g  element i n  t h e  case, due t o  sl ippage i n  connections i n  
assembling t h e  various par t s  of t h e  balance, t h e  f lexures  were 

spot-welded i n  place. I n  addition, the  f l o a t i n g  element was 

mounted and then pinned i n  posit ion such t h a t  sl ippage is  highly 
improbable. A l l  t h e  connections involved i n  mounting and posi- 

t ion ing  t h e  transducer and i t s  core were a l s o  f ixed a f t e r  f i n a l  

adjustment w a s  made by means of epoxy cement. 

Since t h e  f l o a t i n g  element i s  a spring-mounted mass, it osc i l -  

lates readi ly  when subjected t o  vibrat ions or t o  sudden loads.  The 

output from t h e  balance while the f l o a t i n g  element i s  vibrat ing i s  
not useful  f o r  determining drag. 

i n  t h e  past  t o  provide fo r  damping t h e  v ibra t ions  that occur i n  

normal tunnel  operation. This w a s  accomplished by means of t h e  

arrangment shown i n  Fig. 4. 
s i d e  of t h e  f loa t ing  element and a similar adjustable  d isk  w a s  
a t tached t o  t h e  transformer mount. 

gap, the thickness of which was adjustable .  
damping f l u i d  w a s  i n s t a l l e d  i n  t h i s  gap t o  eliminate t h e  v ibra t ion  

problem. 

phonograph record changers, was used s ince it has proved s a t i s f a c -  

t o r y  i n  e a r l i e r  appl icat ions.  

Thus, it has been found necessary 

A small disk  w a s  f ixed t o  t h e  luwer 

These two disks  formed a flat 
A s m a l l  amount of 

A s i l i cone  damping fluid,  manufactured f o r  use i n  Gray 

13 



Provisions were made i n  t h e  balance design t o  permit adjust-  

ment o f t h e  posi t ion of t he  transformer with respect  t o  t h e  f l o a t i n g  

element. This w a s  accomplished by means of t h e  wedge arrangement 

shown i n  F ig .  5 .  When t h e  f i n a l  adjustment w a s  completed, t h e  

transformer housing was cemented t o  t h e  balance base as noted 

previously. Thus, t h e  posi t ion of t h e  transformer i s  not ad jus tab le  

without disassembly of t h e  balance. 

The provisions f o r  posi t ioning t h e  balance with respect  t o  

t h e  case a r e  shown i n  Figs.  3 and 4. 
of t h e  disk i s  accomplished by means of adjustment i n  t h e  screws 

t h a t  a t t ach  t h e  balance t o  t h e  case. The t r a n s l a t i o n a l  adjustment 

of t h e  balance t o  posi t ion t h e  f loa t ing  element properly i n  t h e  

gap i s  accomplished by means of four  ad jus t ing  screws, accessable 

from the  outs ide of t h e  balance. The four  ad jus t ing  screws shown 

i n  Fig. 4 ac tua te  wedges which bare against  a conical  surface on 

the  bottom of t h e  balance. T h i s  arrangement permits ad jus t ing  

the  posit ion of t h e  d isk  i n  t h e  openjng of t h e  case.  

alignment of the f loa t ing  element may be readi ly  accomplished 

should the need a r i s e  without removing t h e  balance from t h e  case.  

The ro t a t iona l  alignment 

Thus, re- 

The influence of t h e  s i z e  of t h e  gap surrounding the f l o a t i n g  

element is not prec ise ly  known. However, it i s  evident t h a t  a 

small gap w i l l  c r ea t e  less flow disturbance than a l a rge  one. 

cordingly t h e  present balances were designed w i t h  a diametral  

clearance of O . W - i n .  

t he  case, p rec ise  alignment w a s  necessary. The element was posi- 

t ioned so t h a t  it had a very s l i g h t  clearance from t h e  forward 

edge o f t h e  case opening. The assembled balances were mounted 

w i t h  t he  element horizontal  during alignment, s ince the force of 

grav i ty  on t h e  sprung components w i l l  otherwise cause l a rge  

Ac- 

Since t h e  element must " f loa t"  free i n  

14 
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deflect ions of t h e  spr ings.  The clearance between t h e  element and 

case w a s  adjusted t o  approximately 5 percent of f u l l  s ca l e  t r a v e l .  

The normal use of a balance i s  such tha t  t he re  may be a 

pressure d i f f e r e n t i a l  ac t ing  on t h e  balance. If t h e  balance were 

i n s t a l l e d  i n  a wind tunnel  w a l l ,  f o r  example, t h e  tunnel  s t a t i c  

pressure may grea t ly  differ from t h e  ambient pressure outs ide t h e  

tunnel .  Such a pressure d i f f e r e n t i a l  w i l l  r e s u l t  i n  flow fhrough 

t h e  balance case and t h e  gap around t h e  f loa t ing  element. 

t h i s  flow w i l l  d i s tu rb  t h e  free-stream flow and cause e r r o r s  i n  t h e  

sk in - f r i c t ion  measurements, the  balance must be sealed t o  preclude 

any "leakage" flow. 

shmn i n  Fig. 3, and a sealed cap through which t h e  e l e c t r i c  leads 

were routed. The leads were sealed wi th  epoxy-type cement where 

they passed through t h e  cap. There w a s  s u f f i c i e n t  s lack  l e f t  i n  

t h e  leads  t o  permit p a r t i a l  removal of t he  seal cap without breaking 

t h e  lead-to-cap seals. To prevent leakage flow along t h e  ex terna l  

surfaces  of t h e  case, a s e a l  groove w a s  included, as shown i n  Fig. 3. 

Since 

This was accomplished by using t h e  "0" ring, 

The f loa t ing  element w a s  positioned f lu sh  wi th  t h e  tes t  surface 

of  t h e  case using a l i n e a r  var iable  d i f f e r e n t i a l  transformer t o  

measure t h e  alignment. 

element p a r a l l e l  t o  t h e  case surface with a deviat ion of approxi- 

mately 100 pin. 

element, s ince it is  noted i n  Ref. 5 t h a t  a recess  causes l e s s  

e r r o r  than an equal protrusion. The tolerance i n  element f l a t n e s s  

w a s  e a s i l y  observed during alignment and w a s  considered i n  making 

t h e  adjustments. 

I n  t h i s  manner it w a s  possible  t o  a l i g n  t h e  

Generally t h e  deviat ion w a s  t h a t  of a recessed 

To ca lcu la te  shearing s t r e s ses  and buoyancy forces,  t h e  

diameters and edge thicknesses of  t h e  elements are required.  These 

are tabulated i n  Table I1 



TABLE I1 

MEASURFD FLOATING-ELEMENT DlMENSIONS 

BALANCE RANGE DIAMEX'ER LIP THICKNESS 
lb lo00 i n .  in. 

2A 

2B 

5A 

5B 

1.ooO 

1.o00 

1 .m1 

1.001 

0.003 

0.003 

0.004 

0.004 

12A 

12B 

12 

12 

16 

1 .m 

1.OOO 

0.002 

0.004 



PlrlRFORMANCE TESTS 

The performance t e s t s  on the s i x  balances were made using a 

Hewlett-Packard Model 204B o s c i l l a t o r  and Model 4 6 3 ~  amplif ier  t o  

supply input power. The balance output w a s  indicated using a Model 
3 k O A  rms voltmeter and Model 3439A d i g i t a l  voltmeter from t h e  same 

manufacturer. The rms voltmeter served as an ac t o  dc converter 

by using i ts  proportional dc output fea ture .  The l i n e a r  var iab le  

d i f f e r e n t i a l  transformer used i n  t h e  balances w a s  t h e  Schaevitz 

Engineering Model 010-MS-LT which requires  180 mW of power. 

stable-amplitude o s c i l l a t o r  produced 10 mw, hence t h e  need f o r  t h e  

ampl i f ie r .  

pul ley and weights. 

t h e  balances is highly l i n e a r  when ca l ib ra t ed  a t  a constant t e m -  

perature .  

The 

The balance ca l ibra t ions  were made using a low-fr ic t ion 

The output of t h e  pos i t ion  transducer used i n  

The major mechanical component of t h e  balances t h a t  can 

influence l i n e a r i t y  i s  t h e  spring system. 

of t h e  springs is  qu i t e  small, no hysteresis e f f e c t  occws  i n  
t h e  spr ings.  

t o  result i n  excel lent  l i n e a r i t y .  This w a s  confirmed i n  a l l  

cases by t h e  bench tests, where t h e  l i n e a r i t y  of t h e  balances a t  
a f ixed temperature was we l l  within t h e  spec i f ica t ions  of Table I. 

The non-l inear i ty  appeared t o  be determined more by t h e  care  i n  

ca l ib ra t ion  than by t h e  balance i t se l f .  When t h e  input voltage 

t o  t h e  balance w a s  kept constant, and care  w a s  taken i n  t h e  C a l i -  

b r a t ion  procedure, t h e  non-linearity w a s  less than one-quarter 

of 1 percent.  

Since t h e  def lec t ion  

Thus, t h e  basic  design of t h e  balance i s  such as 

The zero d r i f t  of t h e  balances, when maintained at a constant 

(room) temperature, appeared t o  be determined primarily by t h e  



s t a b i l i t y  of t h e  input voltage t o  t h e  transformer.  Af te r  an i n i t i a l  

warm-up period, t h e  zero d r i f t  became qu i t e  s m a l l .  I n  severa l  in- 

stances,  the  balance zero reading w a s  monitored f o r  two and th ree  

day periods with less than a one-quarter percent var ia t ion .  

should be noted t h a t  t h e  i n i t i a l  warm-up includes t h e  heating of 

t h e  posit ion transducer i tsel f  as wel l  as t h e  instrumentation used 

i n  conjunction wi th  t h e  balances. 

t h e  transformer i s  small, t he re  i s  some change i n  temperature of 

t h e  transformer due t o  t h e  appl icat ion of power, therefore ,  it is  

necessary t o  include a period f o r  warm-up of t h e  balance i t s e l f .  

The balance warm-up period appeared t o  be somewhat longer than 

t h a t  required f o r  t h e  power generating equipment t o  become s t a b l e .  

It 

Although t h e  power supplied t o  

A s  previously noted, t h e  thermal zero s h i f t  r e su l t i ng  i n  

change of operating temperature w a s  t h e  most d i f f i c u l t  problem 

i n  t h e  balance design. The thermal expansions and thermal s t r a i n s  

i n  t h e  mechanical components of t h e  balance were not predictable,  

hence t h e  need f o r  a t r i a l  and ' e r ro r  approach t o  t h i s  problem. 

The balances were very sens i t i ve  t o  non-uniform heating, particu- 

l a r l y  w i t h  respect t o  t h e  f lexures .  Thus i n  making t e s t s  t o  de- 

termine the thermal zero s h i f t ,  considerable care  w a s  necessary 

t o  ensure t h a t  t h e  balance w a s  maintained a t  a uniform temperature 

while t h e  temperature changes were made. This w a s  accomplished 

primarily by using a very low ve loc i ty  supply of heated air ,  and 

changing the heating a i r  temperature slowly. There w a s  from one- 

quar te r  t o  one-half percent s c a t t e r  i n  repeat ing t h e  thermal zero 

tes t  on any given balance. Under those conditions,  it w a s  possible  

t o  obtain a thermal zero s h i f t  that d id  not exceed approximately 

+1 percent for a l l  but one balance. 

s h i f t  w a s  +2 percent and -1 percent.  The zero s h i f t  w a s  generally 

l i n e a r  w i t h  temperature within t h e  accuracy of t h e  t e s t s .  

For balance nb. 12a, t h e  

The 
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* '  tes ts  were made using a temperature range of room t o  1800~. 
w a s  done t o  avoid the  use of re f r igera t ion  equipment t o  obtain 

t h e  50°F f igure  noted i n  Table I .  

a r e  considered appl icable  t o  any c'hange i n  temperature of 193°F 
which w i l l  not physical ly  damage t h e  balance,  

it should be noted that t h e  maximum temperature, which w i l l  not 

cause damage t o  the balances, i s  t h e  l imi t a t ion  of t h e  epoxy cement 

used t o  secure the adjust ing screws i n  t h e  balance assembly, 

is  estimated that t h i s  cement i s  capable of withstanding tempera- 

tures of 250-300'F without serious damage. The remaining cam- 

ponents of t h e  balance including t h e  transformer a r e  designed t o  

withstand at  l e a s t  400°F. 

This  

The thermal zero s h i f t  r e s u l t s  

I n  t h i s  connection, 

It 

The ef fec t  of heat t r a n s f e r  on t h e  balances was determined 

by heating the f l o a t i n g  element t o  25°F above the  temperature of 

t h e  case and balance base. Similarly, t h e  temperature d i f f e r e n t i a l  

i n  t h e  opposite d i r ec t ion  w a s  obtained by heating t h e  balance 

base and case t o  a temperature 25°F above t h e  f l o a t i n g  element 

temperature. During these  tests, t h e  change i n  t h e  zero reading 
of t h e  balance was generally within f l p e r c e n t .  This pa r t i cu la r  

t es t  result is  believed t o  be strongly influenced by t h e  tempera- 

ture gradients  introduced i n  the balance. This aspect  i s  r e l a t ed  

t o  the influence of non-uniform heat ing mentioned e a r l i e r .  Thus, 

t h e  main influence of heat transfer during operation of t h e  balances 

i s  believed t o  be t h e  r e su l t i ng  thermal gradients  i n  t h e  balance and 

t h e  associated expansion and s t r a i n s  which are known t o  cause zero 

s h i f t s .  

The wind tunnel  r epea tab i l i t y  and mutual agreement tests were 

made using a subsonic wind tunnel i n  order t o  tes t  two balances 

simultaneously. The r epea tab i l i t y  of each individual  balance w a s  



very good, generally within one-quarter percent.  The mutual agree- 

ment between two balances of t h e  same shear  force range was a l s o  

good, being i n  general  within one-half percent.  For these  t e s t s  

t h e  two primary windings of t h e  balance transformers were connected 

i n  se r i e s  across  t h e  power supply, and a switch w a s  used t o  a l t e r -  

nately read t h e  output of t h e  two balances using t h e  same rms vol t -  

meter and t h e  dc d i g i t a l  voltmeter used i n  t h e  bench t e s t s .  

Two operat ional  aspects  of t h e  tunnel  tes ts  warrent some d i s -  

cussion. Since t h e  balances include a damping mechanism t o  pre- 

vent vibration, t h e  response t o  changes i n  load i s  correspondingly 

slow. This i s  pa r t i cu la r ly  t r u e  of t h e  most s ens i t i ve  balance, 

where the  spr ing constant i s  qu i t e  s m a l l  and t h e  res tor ing  forces  

correspondingly weak. Thus i n  ca l ib ra t ions  on the  bench or i n  

t h e  tunnel, it i s  necessary t o  t a p  or v ib ra t e  t h e  balances t o  mini- 

mize any damping e f f e c t  on readings. 

nel ,  t h e  tunnel  v ibra t ion  serves t h i s  purpose. Another problem 

which occurs i n  t h e  tunnel  is i n  t h e  o r i en ta t ion  of t h e  balances. 

When t h e  balance is mounted i n  a horizontal  surface,  it i s  neces- 

sary that t h e  surface be very nearly l e v e l .  Any inc l ina t ion  of 

t h e  surface i n  t h e  drag d i rec t ion  w i l l  r e s u l t  i n  a displacement 

of t h e  f loa t ing  element posi t ion due t o  grav i ty  forces  ac t ing  on 

t h e  sprung weight. 

such as t o  de f l ec t  t h e  balance i n  t h e  upstream di rec t ion ,  s ince 

i n  t h i s  case t h e  f l o a t i n g  element may e a s i l y  touch t h e  case l i p .  

During operation of t h e  tun- 

This can be troublesome i f  t h e  inc l ina t ion  i s  

With respect  t o  both ca l ib ra t ion  and operation of t h e  balances, 

it i s  necessary t o  insure that foreign matter  does not become 

lodged i n  t h e  gap around t h e  f loa t ing  element. 

c r i t i c a l  i n  t h e  upstream region of t h e  gap, s ince  t h a t  clearance 

of t h e  f loa t ing  element wi th  respect  t o  t h e  case is  qu i t e  s m a l l .  

This i s  pa r t i cu la r ly  
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Poor repea tab i l i ty  of t h e  zero reading is  generally an indicat ion 

of e i t h e r  foreign matter i n  t he  gap, o r  a contact between t h e  

element and case,  The method found most pract icable  f o r  cleaning 

t h e  gag 2s +,he me of very t h i n  t i s s u e  paper, which can be inser ted  

i n  t h e  gap and drawn around the  element t o  remove t h e  impediments. 

Care must be taken, however, t o  insure t h a t  t he  paper thickness i s  

not so la rge  as t o  bind i n  t h e  gap. Care should a l s o  be taken 

not t o  i n s e r t  t he  paper too  deeply as it i s  possible  t o  d i s tu rb  

t h e  d isk  thermocouple wires, which a r e  qu i t e  f r a g i l e .  The posi t ion 

of t h e  d isk  thermocouple may be deduced from t h e  f a c t  t h a t  it is 

located on the  opposite s ide  from the  case thermocouple. 
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. 
PRESSURE FORCES 

Tests  were made i n  an e f f o r t  t o  determine the buoyancy forces on 

t h e  f l o a t i n g  element caused by s l i g h t  misalignment of t h e  element w i t h  

respect t o  t h e  balance case. 

l i p  thickness of 0.025 i n ,  

as shown i n  Fig.  6, using 0.020 in .  tubing cemented i n  s l o t s  i n  t h e  

case t e s t  surface,  These o r i f i c e s  had an opening of 0,010 in .  with 

t h e  center  l i n e  of t h e  opening a t  approximately 0.010 i n ,  below t h e  

t e s t  surface.  

ments around t h e  case, s t a r t i n g  a t  t h e  most upstream point of t h e  

case. 

opposite t h e  t r a i l i n g  edge of the movable element. 

t e r  was approximately 1.0 in. ,  and a difference i n  diameters between 

t h e  case and element of 0.006 i n ,  was used, 

w a s  0.005 i n .  

permitted motion perpendicular t o  t h e  case t e s t  surface.  

mounted f l u s h  with t h e  tes t - sec t ion  f l o o r  of a 2 x 2 i n .  var iable  

Mach Number wind tunnel.  

element posi t ion ranging from a 0.001 in .  recess (below t h e  t e s t  

sur face)  t o  a 0.001 i n .  protrusion. 

Ref. 5 as covering the  maximum t o l e r a b l e  e r r o r  i n  balance accuracy 

due t o  misalignment. The t e s t s  were made a t  several  Mach and Reynolds 

Numbers. I n  general, t he  pressure var ia t ion  around the case l i p ,  

referenced t o  the most upstream case l i p  o r i f i c e ,  w a s  less than 

1 i n .  of water. 

t h e  case showed no consis tent  pat tern o ther  than a rough proportion- 

a l i t y  t o  misalignment. 

o f  misalignment was var ied were t o o  small t o  use as a pract icable  

ind ica tor  of the degree of misalignment. 

A balance case was fabricated having a 

Six l i p  pressure o r i f i c e s  were ins ta l led ,  

The o r i f i c e s  were uniformly spaced a t  60 degree incre- 

Thus, one o r i f i c e  was opposite t h e  leading edge and one was 
The element diame- 

The element l i p  thickness 

The element was mounted on a t ravers ing  mechanism which 

The case was 

Case l i p  pressures were measured w i t h  the  

These limits were selected from 

The pressure d i s t r i b u t i o n  around the periphery of 

The pressure changes observed as the amount 
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The case l i p  pressure datawere used t o  ca lcu la te  t h e  buoyancy 

forces  on t h e  element by assuming t h a t  they r e f l e c t e d  t h e  pressures 

on t h e  element l i p .  The results were e r r a t i c  i n  t h a t  t h e r e  w a s  no 

consistent t rend  with misalignment and t h e  r e p e a t a b i l i t y  of t h e  

buoyancy forces was poor. I n  general  t h e  indicated buoyancy forces  

were less than those reported i n  R e f .  5 .  The poor r e s u l t s  a r e  

a t t r i b u t e d  t o  t h e  d i f f i c u l t y  i n  making precise  measurements of very 

s m a l l  pressure changes. 

An invest igat ion w a s  made of t h e  e f f e c t  of t r a n s l a t i o n  of t h e  

f l o a t i n g  element on t h e  balance output reading. An operating balance 

w a s  constructed and mounted on a t ravers ing  mechanism which permitted 

moving the balance i n  t h e  thrust-drag d i r e c t i o n  while maintaining 

t h e  element f l u s h  i n  t h e  t e s t  surface.  Tests were made a t  severa l  

Mach and Reynolds Numbers during which t h e  balance w a s  t raversed 

across the f u l l  range of element posi t ions.  

reading with element posi t ion ranged up t o  *3 percent of t h e  average 

reading. There w a s  a cons is ten t ly  pos i t ive  change i n  t h e  balance 

output during a t raverse  f o r  sane t e s t  conditions and negative f o r  

o thers .  Figure 7 shows t h e  t rend  which w a s  generally observed. Case 

l i p  pressures were a l s o  recorded during t h e  t raverses ,  but it w a s  not 

possible t o  c o r r e l a t e  t h e  changes i n  drag reading with buoyancy forces  

calculated from t h e  l i p  pressures.  There w a s  some indica t ion  t h a t  t h e  

drag reading changes were t h e  result of buoyancy forces,  however. 

The var ia t ion  i n  drag 

A f i n a l  set of tests were made i n  which a dummy f l o a t i n g  element 

w a s  constructed t o  incorporate s ix  pressure o r i f i c e s  on t h e  element 

l i p  (Fig.  6 ) .  
opposite the  case l i p  o r i f i c e s .  

i n s t a l l e d  ins ide  t h e  balance case, w e l l  below t h e  dummy element, i n  

order t o  measure t h e  balance Itcavitytt pressure.  

w a s  se lected t o  give a minimum pressure gradient on t h e  tunnel  f l o o r  

These were 0.0035 i n .  i n  diameter and were located 

Four pressure o r i f i c e s  were also 

A Mach Number of 2.2 



. 

near  t h e  t e s t  s t a t ion .  

pressures,  and two f l o o r  s t a t i c  pressures were measured f o r  several 

pos i t ions  of t h e  dummy element i n  i t s  annular gap. The four  cavi ty  

pressure measureIzents were always ident ica l ,  although there  was soae 

change i n  l e v e l  with element posit ion.  This was consis tent  w i t h  t h e  

generally accepted theory t h a t  there  are no pressure gradients  ins ide  

t h e  case except i n  t h e  m e d i a t e  v i c i n i t y  of t he  gap between t h e  ele-  

ment and case l i p s .  The cavi ty  pressure was a l s o  nearly equal t o  t h e  

s t a t i c  pressure on t h e  tunnel  f loor  j u s t  ahead of  t h e  balance. 

The cavi ty  pressure, t h e  element and case l i p  

Figures 8, 9, and 10 show typ ica l  comparisons of l i p  pressures 

on t h e  element and t h e  case.  

of approximately 2.5 i n .  H20 over 2 i n .  length spanning t h e  balance 

loca t ion  i n  t h e  tunnel  f l oo r .  

mately 0.006 in., and the  case l i p  thickness was approximately 0.020 i n ,  
The case l i p  o r i f i c e  diameters were approximately 0.010 in. ,  w i t h  t h e i r  

cen ter l ines  about 0.010 in .  below t h e  t e s t  surface.  

s l i g h t  bevel a t  Posi t ion 3 ,  r e su l t i ng  i n  e r r a t i c  readings, which should 

be disregarded. 

w a s  0.008 i n .  

A l l  pressures were referenced t o  a s ta t ic -pressure  o r i f i c e  on the 

tunnel  f l o o r  a t  a point 1.5 i n .  ahead of the  center  of t h e  dummy 

"f loat ing" element. 

There w a s  a favorable pressure gradient 

The element edge thickness was approxi- 

The element had a 

The gap (d i f fe rence  i n  case and element diameters) 

The pressures were measured using o i l - f i l l e d  U-tubes. 

In t e rp re t a t ion  of Figs. 8 t o  10 may be aided by noting tha t  a 

l i n e a r  pressure gradient of 1 i n .  of water across the 1 in .  diameter 

f loa t ing  element w i l l  induce a buoyancy force of 0.17 millipounds. 

A gradient of 3/4 in .  H20 would result i n  an e r r o r  of 1 percent i n  

t h e  1 2  millipound balances of Table 1. Figure 8 shows t h e  results 
obtained w i t h  t h e  element i n  the  fully-rearward posi t ion;  i .e.,  

touching the  a f t  l i p  of the case. 
qu i t e  s m a l l  a t  a l l  o r i f i ce s ,  and t h e  r epea tab i l i t y  e r r o r s  are similar 

The pressure differences ( a P )  a r e  



. 

i n  magnitude t o  t h e  pressure differences.  

when t h e  element was centered i n  t h e  gap; i . e . ,  at  t h e  mid-point of 

t r a v e l .  

t h e  r epea tab i l i t y  e r r o r s .  

l i p  pressures do not accurately ind ica te  t h e  ac tua l  pressure on t h e  

element l i p .  

pressure t o  some exten t .  

da ta  f o r  t h ree  element posi t ions between those of Figs .  8 and 9. 
prec ise  comparison of t h e  change i n  balance reading as t h e  element 

pos i t ion  was var ied and t h e  pressure forces  obtained from Figs .  8 t o  10 

i s  not possible because of some va r i a t ion  i n  t e s t  conditions between 

the  two experiments. 

element l i p  pressures gave force changes roughly t h e  same as noted i n  

t h e  balance output during a t r ave r se .  

case l i p  pressures were approximately ha l f  as l a rge  as measured during 

t h e  t raverse .  

Figure 9 shows t h e  r e s u l t s  

Again the  values of aP a r e  small and similar i n  magnitude t o  

Despite t h i s ,  it i s  evident that t h e  case 

The case l i p  pressures apparently r e f l e c t  t h e  cavi ty  

This i s  a l s o  evident i n  Fig.  10 which shows 

A 

An approximate comparison ind ica tes  t h a t  t h e  

The forces  obtained from t h e  

From the  above r e s u l t s ,  which cover t h e  normal operating 

posi t ions of t h e  balance f l o a t i n g  element, it i s  concluded t h a t  t h e  

o r i f i c e s  used i n  t h e  case l i p  are not su i t ab le  f o r  determining m i s -  

alignment. This is  a t t r i b u t e d  pr imari ly  t o  t h e  f a c t  t h a t  t h e  o r i f i c e  

openings are p a r t i a l l y  open t o  t h e  case cavi ty ,  as shown i n  Fig.  6. 
It i s  customary t o  use a s m a l l  element l i p  thickness  t o  minimize t h e  

a rea  on which buoyancy forces  may e x i s t .  

be very s m a l l  i f  i t s  opening i s  not t o  extend below t h e  element l i p .  

Although small o r i f i c e s  were successfully used i n  t h e  present work, 

t h e i r  use was qu i t e  d i f f i c u l t .  

during normal handling and some leaks were encountered i n  t h e  con- 

nection between t h e  d r i l l e d  o r i f i c e  and t h e  hypodermic tubing leading 

out of the  e lement ,  

aluminum element were not successful  i n  harder materials. 

case l i p  o r i f i c e s  t o  determine misalignment or buoyancy forces,  

Thus a case l i p  o r i f i c e  must 

The o r i f i c e s  f requent ly  became plugged 

Also, t h e  s m a l l  dr i l ls  t h a t  worked w e l l  i n  t h e  
The use of 

26 



therefore ,  does not appear pract icable  i n  balances intended f o r  

general  use. 

been shown t h a t  even a small o r i f i c e  would be sa t i s fac tory ,  s ince 

the re  may w e l l  be pressure gradients i n  t he  gap between the  case and 

element l i p s .  

I n  addi t ion t o  t h e  mechanical problems, it has not ye t  

27 



CONCLUSIONS 

1. Invest igat ion of t h e  use of pressure o r i f i c e s  i n  t h e  case 

l i p  of a f l o a t i n g  element balance indicated t h a t  t h e  o r i f i c e s  were 

not s u i t a b l e  for  use i n  determining e i t h e r  misalignment o r  t h e  buoyancy 

forces  on the f loa t ing  element which r e s u l t  from pressure gradients.  

The primary d i f f i c u l t y  was the  need f o r  an extremely small or i f ice ,  t h e  

s i z e  being t o o  small t o  be mechanically p r a c t i c a l .  

2. It was found that the  shear force indicat ion changed by as 
much as k3 percent as t h e  locat ion of t h e  f l o a t i n g  element was varied 

over t h e  full operating range. Pressure measurements on t h e  element 

l i p  indicated that the  buoyancy forces were least when t h e  element wae 

near t h e  rear l i m i t  of t r a v e l .  

3 .  Balances were constructed having approximately t h e  p e r f o m n c e  

desired.  

the thermal expansion and thermal s t r a i n s  which resu l ted  from changing 

t h e  temperature of the balances. 

such e f f e c t s  by means of se lec t ive  assembly of t h e  balance f lexures .  

Th i s  method permitted obtaining flexures which resu l ted  i n  approximate 

cancel la t ion of the  overa l l  temperature e f f e c t s .  

The major problem i n  a t t a i n i n g  s a t i s f a c t o r y  perfomance was 

It w a s  found possible t o  minimize 

4. I n  order t o  minimize the  change i n  modulus of e l a s t i c i t y  of 

t he  spr ing material w i t h  changes i n  temperature, the  o r i g i n a l  f lexure 

material selected was  Elinvar Extra. 

change i n  modulus w i t h  temperature. Since it i s  a n icke l -s tee l  

material, i t s  thermal conductivity w a s  low compared t o  beryllium- 

copper, which i s  customarily used f o r  f lexure material i n  balances 

operating a t  or near constant temperature conditions.  

This material has a very low 



3 .  The balance having t h e  least ful l  sca l e  shear  force  

capabi l i ty  proved most d i f f i c u l t  t o  design. 

made t h e  balance subject  t o  l a rge  e r r o r s  as a result of very small 

thermally induced forces .  To minimize these,  it w a s  necessary t o  

use beryllium-copper f lexures  having a high thermal conductivity.  

The high s e n s i t i v i t y  

Defense Research Laboratory 
The University of Texas a t  Austin 
Austin, Texas, 19 Ju ly  1967 
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FIGURE 7 
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